Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties.

نویسندگان

  • Belinda Yap
  • Roger D Kamm
چکیده

Neutrophils traversing the pulmonary microcirculation are subjected to mechanical stimulation during their deformation into narrow capillaries. To better understand the time-dependant changes caused by this mechanical stimulus, neutrophils were caused to flow into a microchannel, which allowed simultaneous visualization of cell morphology and passive rheological measurement by tracking the Brownian motion of endogenous granules. Above a threshold stimulus, mechanical deformation resulted in neutrophil activation with pseudopod projection. The activation time was inversely correlated to the rate of mechanical deformation experienced by the neutrophils. A reduction in shear moduli was observed within seconds after the onset of the mechanical stimulus, suggesting a sudden disruption of the neutrophil cytoskeleton when subjected to mechanical deformation. However, the magnitude of the reduction in moduli was independent of the degree of deformation. Recovery to nearly the initial values of viscoelastic moduli occurred within 1 min. These observations confirm that mechanical deformation of neutrophils, similar to conditions encountered in the pulmonary capillaries, is not a passive event; rather, it is capable of activating the neutrophils and enhancing their migratory tendencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HIGHLIGHTED TOPIC Biomechanics and Mechanotransduction in Cells and Tissues Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties

Yap, Belinda, and Roger D. Kamm. Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J Appl Physiol 98: 1930–1939, 2005. First published January 7, 2005; doi:10.1152/japplphysiol.01226.2004.—Neutrophils traversing the pulmonary microcirculation are subjected to mechanical stimulation during their deformation into narro...

متن کامل

Cytoskeletal remodeling and cellular activation during deformation of neutrophils into narrow channels.

Neutrophils are subjected to mechanical stimulation as they deform into the narrow capillary segments of the pulmonary microcirculation. The present study seeks to understand the changes in the cytoskeletal structure and the extent of biological activation as a result of this process. Neutrophils were passed through narrow polycarbonate filter pores under physiological driving pressures, fixed,...

متن کامل

A Biomechanical Approach for the Study of Deformation of Red Cells in Narrow Capillaries

This model focuses on the behavior of capillary-tissue fluid exchange system when the diameter of the capillary is less than that of red cell. In vivo and in vitro observations indicate that the width of the gap between the red cell and the vessel wall is generally small compared to the radius of the capillary for a single file flow of red cell in narrow vessel, particularly if the vessel diame...

متن کامل

Changes in the biomechanical properties of neutrophils and endothelial cells during adhesion.

This study examined changes in the biomechanical properties of cultured pulmonary microvascular endothelial cells (ECs) and neutrophils induced by adhesion of neutrophils to these ECs. The biomechanical properties of cells were evaluated using magnetic twisting cytometry, which measures the angular rotation of ferromagnetic beads bound to cells through antibody ligation on application of a spec...

متن کامل

EFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS

Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2005